Till startsida
Till innehåll Läs mer om hur kakor används på gu.se

Longitudinal monitoring of symptom severity trajectories using speech signals, wearable sensors, and smartphones: applications in neurodegenerative disorders and mental disorders


The key theme of my research work is capitalizing on rich sources of data to develop clinical decision support tools which facilitate better-informed decisions. In this talk I will focus on two themes: (1) using speech signals to monitor Parkinson’s disease symptom severity, and (2) monitoring of mental disorders. For the former, we use sustained vowels and speech signal processing tools to extract clinically useful information which we map onto the standard clinical metric quantifying Parkinson’s disease symptom severity. For the latter, we use data derived from wearable sensors and smartwatches, cross-refencing findings against clinical labels and self-reported outcome measures. I will demonstrate how raw data such as actigraphy, heart rate, and geolocation can be mined to empower experts remotely monitor symptom trajectories and objectively assess therapeutic interventions.

Föreläsare: Athanasios Tsanas, Darth, U. of Edinburgh

Datum: 2019-12-06

Tid: 10:30 - 12:00

Kategorier: Humaniora

Plats: Humanisten,Renströmsgatan 6

Kontaktperson: Dimitrios Kokkinakis

Sidansvarig: Webbredaktionen|Sidan uppdaterades: 2018-01-11

På Göteborgs universitet använder vi kakor (cookies) för att webbplatsen ska fungera på ett bra sätt för dig. Genom att surfa vidare godkänner du att vi använder kakor.  Vad är kakor?